A new gene of the $f 1$ operon of Y. pestis involved in the capsule biogenesis

A.V. Karlyshev, E.E. Galyov, O.Yu. Smirnov, A.P. Guzayev, V.M. Abramov and V.P. Zav'yalov
Institute of Immunology, State Concern 'Biopreparation', 142380 Lyubuchany, Moscow Region, USSR

Received 25 November 1991
The DNA sequence determination of the $f l$ operon between the genes encoding the F1 subunit (cafl) and chaperone-like protein (caf/M) revealed a large open reading frame that codes for a polypeptide similar to some E. coli proteins involved in the biogenesis of fimbria. The deletion and in trams complementation analyses showed that this gene is not necessary for extracellular transport of the Fl subunit but plays a role in the capsule assembly.

Capsular antigen; Protein secretion; Nucleotide sequence; Complementation analysis; γ. pestis

1. INTRODUCTION

Y. pestis cells are known to form unusually large capsules coating the bacteria, the Fl protein subunit being its main (if not the sole) component [1]. We have previously cloned the $f l$ operon in E. coll and found two genes, one of which codes for the capsule subunit (cafl) [2] and the other for a chaperone-like protein (caflM) [3] responsible for the subunit secretion. A contiguous DNA region of about 2.5 kb with unknown function was located between these two genes. In order to elucidate the role of this intergenic region in the process of capsule formation, we carried out the DNA sequence determination and complementation analysis. The data obtained show that there is a sole large open reading frame between these two genes. This region was found to be of importance for capsule assembly. A possible role of the corresponding polypeptide is discussed.

2. MATERIALS AND METHODS

2.1. Bacterial strains, antlgen determination

The E. coli strain JM103 was used in repression-induction experiments. For induction of the lac-promoter, the overnight culture grown in 1 ml LB broth at $37^{\circ} \mathrm{C}$ was one-tenth diluted with fresh medium, incubated for 1 h followed by the addition of 1 PTG to 1 mM and incubation at $37^{\circ} \mathrm{C}$ for 4 h . The bacterial cells were washed with 0.015 M NaCl , lysed by 20μ of mixture ($1 \mathrm{mg} / \mathrm{ml}$ lysozyme, 10 mM Tris$\mathrm{HCl}, 1 \mathrm{mM}$ EDTA, 0.1% Triton X-100, pH 8.0), diluted to 1 ml by buffer ($0.015 \mathrm{M} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 10 mM Tris- $\mathrm{HCl}, \mathrm{pHI} 8.0$), and Fl antigen was tested by a passive hemagglutination reaction. Antiplague agglutinating antiserum and erythrocytes conjugated with polyclonal anti-Fl antibodies were obtained from All-Union AntiPlague Institute 'Microb' (Saratov, USSR).

[^0]
2.2. DNA manipulations

Plasmids p12R, pF18L and pF19R were described previously $[2,3]$. Unidirectional deletion derivatives of p12R were obtained by Smal and Kpnl hydrolysis followed by treatment with Exolll and mung bean nucleases [4]. Plasmids pKMI and pKM4 were obtained by cloning of the PviII fragment of the plasmid pF 18 L in opposite orientations into the Hincll site of pACYCl77. DNA cloning and sequencing by the Maxam-Gilbert and Sanger-Coulson methods were performed essentially as described by Maniatis et al. [4]. DNA and protein sequences analyses were made using the GENEPRO solhware package from Riverside Scientific Enterprises and PCGENE package from Genofit.

Fig. 1. Restriction map and the sequencing strategy of the $f /$ operon. Solid bars indicate cloned fragments. Arrows above the restriction sites indicate open reading frames. Short arrows underneath indicate lengths and directions of the sequences determined; arrows with squares refer to the sequences obtained by internal primers; dolled arrows refer to the sequences obtained by the Maxam-Gilbert tectinique; other arrows refer to the sequences obtained from deletion derivatives by means of M13 direct primer.

 АНА
 P If S I Y T I T G Q A S S S G T Y G D 720

Fig. 2. Nucleotide sequence or cafla gene and deduced amino acid sequence.

3. RESULTS AND DISCUSSION

The unidirectional deletion derivatives of p 12 R were used for DNA sequence determination and complementation analysis (Fig. 1). The sequencing of the $f l$ operon between cafl and cafl M genes revealed a sole long read-

Table I
Production and secretion of Fl antigen by E coll cells, containing corresponding plasmids.

Plasmids	Production	Secretion	Agglutination
P12R	++ +	+t+	+++
pFi9R	++	-	-
pF18L	-	-	-
pKM1	-	-	-
pKM4	+	-	-
pKM1+p184	+4*	++	-
pKM4+pl84	4++	+++	-
pKM4+pl810	+++	$+++$	
pKM4+pl8114	+++	$t++$	+++

ing frame encoding a polypeptide with M_{r} of $93,205 \mathrm{Da}$ (Fig. 2). The hypothetical polypeptide was designated as Caf1A. A PIR'89 database homology search revealed stretches of homology between CafiA and proteins FaeD [5], PapC [6] and FimD [7] involved in the assembly of E. coll fimbria. An overall homology between amino acid sequences of these polypeptides and Caf1A was found to be 18% for FaeD and FimD, and 13% for PapC. Fragments of alignments displaying maximum homology are shown in Fig. 3. The CaflA protein like FaeD precursor contains a leader-like NH_{2}-terminal portion of 25 amino acid residues. This fragment has n, h and c regions typical of leader sequences and a potential cleavage site that conforms to the $(-3,-1)$ rule [9]. The secondary structure prediction analysis revealed that all four proteins are mainly β structural, they have similar M_{r} and amino acid composition. These data allow us to suggest a similarity in their functions. To understand the role that CaflA can play in capsular biogenesis we have carried out a complementation anal-

CAF1A 274 ARTgARVEVERDGY tugNEfVPgGPEELARLPL 306

Fig. 3. Alignment of the fragments of primary structures of the protein Catl M of Y. pestis and FinD, PapC and FacD proteins of E. coli. Amino acid residues coinciding in the sequences compared are indicated by large letters. The probability of random coincidence was estimated by the method in ref. [8].
ysis. For this, caf $/ 1$-gene-lacking but caf $1 M$-containing deletion derivatives of p12R (p184, p1810 and p18114) were used (Fig. 1). The cafliA gene was completely or partially removed from p12R yielding p1810 and p184, respectively; thus pl84 encodes a truncated form of CaflA. As shown in Table I, pKM4 and pKM1, containing only the cafI gene under or without the control of promoter $P_{\text {bla }}$ respectively, do not determine the extracellular production of the F1 antigen. It is of interest that in both pKM 4 and pKM 1 the cafl gene is under the control of its own hypothetical promoter, but the F1
synthesis is not observed until p184 or pl810 plasmids have been added. Introduction of p184 and p1810 into cells containing pKM4 not only increases the antigen production but also leads to its secretion. It is important that even PF 19 R does not confer on bacteria the capability to produce a considerable amount of extracellular antigen despite' the greater intracellular synthesis as compared to pKivi4-containing cetis. The question arises: what gene is responsible for the F1 antigen production and secretion? Since the induction takes place only after the addition of IPTG we scarched for
open reading frames downstream from promoter $P_{\text {tac }}$ in the smallest plasmid p1810. We found that the sole large open reading frame in this direction is that of the cafl M gene. From these data we can deduce the stimulatory role of the caflM gene product for the Fl secretion. The CaflM protein seems to interact with the subunit polypeptide and to prevent it from digestion by a protease, as in the case of K88 biogenesis [10]. It also followed from these experiments that the caf $/ A$ gene product is not necessary for the secretion.
As shown in Table 1, the deletion of the cafla gene results in the incapability of bacteria to agglutinate with agglutinating anti-plague antiserum. It implies that bacteria do not form capsules. Thus, the CaflA protein must be involved in the capsule assembly. It is likely that the CaflA molecule located in the outer membrane, binds F1 antigen subunits during the extracellular secretion process. The data obtained suggest that the mechanisms of E. coli fimbria biogenesis and of Y. pestis capsular biogenesis are very similar. The proteins encoded by the $f l$ operon have similar counterparts among the products of genes of fimbria operons (F1 subunit - fimbria subunit; CaflM chaperone-like protein -.. PapD chaperone; Caf1A protein - FaeD assembly protein). This is a striking feature as there is no similarity between the filamentous shape of fimbria and a structure of capsule evenly coating the bacterium. It should be noted that, despite the similarity between the fimbria and capsular genes, there exists a clear-cut distinction in the organization of operons. For example, in $K 99$ and $f 7$, fimbria operons, the genes of subunit and assembly proteins are placed in the closest proximity to
each other [11] as in the case of the $f 1$ operon, but in K88 and fim [11] some other genes are placed between these genes. Such differences might reflect both the evolutionary relationships between these operons and the relative mobility of genes composing them which have led to their rearrangement.

Acknowledgements: We are grateful to G.A. Zav'yalova for help with computer estimations.

REFERENCES

[I] Anisimov, P.I.. Serdobintsev, L.N., Taranenko. T.M. and Naumov, A.V. (1987) Mol. Genel. Virol. (USSR) 2, 24-27.
[2] Galyov, E.E., Smirnov, O.Yu., Karlyshev, A.V., Yolkovoy, K.1., Denesyk, A.I., Nazimov, I.V., Rubtsov, K.S., Abramov, V.M., Dalvadyanz, S.M. and Zav'yalov, V.P. (1990) FEBS Lett. 277, 230-232.
[3] Galyov, E.E., Kurlyshev, A.V., Chernovskaya, T.V., Dolgikh, D.A., Smirnov, O.Yu., Volkovoy, K.I., Abramov, V.M. and Zav'yalov, V.P. (1991) FEBS Lett. 286, 79-82.
[4] Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
[S] Mooi, F.R., Claassen, I., Bakker, D., Knipers, H. and De Graaf, F.K. (1986) Nucleic Acids Res. 14, 2443-2457.
[6] Norgren, M., Boga, M., Tennent, J.M. and Normark, S. (1987) Mol. Biol. Rep. 12, 169-178.
[7] Klemm, P. and Christiansen, G. (1990) Mol. Gen, Genel, 220. 334-338.
[8] Finkelstein, A.V. (1977) FEBS Lent. 82, 169-171.
[9] Von Heijne, G. and Abrahamsen, L. (1989) FEBS Leel. 244, 439-446.
[IO] Bakker, D., Vader, C.E.M., Roosendaal, B., Mooi, F.R., Oudega, B. and De Graaf, F.K. (1991) Mol. Microbiol. 5, 875-886. [11] Klemm, P. (1985) Reviews in Infection Diseases 7, 321-340.

[^0]: Correspondence address: A.Y. Karlyshev, Institute of Immunology, 142380, Lyubuchany, Chekhov District, Moscow Region, USSR

